
J Stat Phys (2009) 135: 241–260
DOI 10.1007/s10955-009-9715-3

Transport by Molecular Motors in the Presence of Static
Defects

Yan Chai · Reinhard Lipowsky · Stefan Klumpp

Received: 25 September 2008 / Accepted: 28 February 2009 / Published online: 25 March 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The transport by molecular motors along cytoskeletal filaments is studied theo-
retically in the presence of static defects. The movements of single motors are described
as biased random walks along the filament as well as binding to and unbinding from the
filament. Three basic types of defects are distinguished, which differ from normal filament
sites only in one of the motors’ transition probabilities. Both stepping defects with a reduced
probability for forward steps and unbinding defects with an increased probability for motor
unbinding strongly reduce the velocities and the run lengths of the motors with increasing
defect density. For transport by single motors, binding defects with a reduced probability
for motor binding have a relatively small effect on the transport properties. For cargo trans-
port by motors teams, binding defects also change the effective unbinding rate of the cargo
particles and are expected to have a stronger effect.

Keywords Molecular motors · Defective filaments · Motor walks · Motor traffic · Run
length · Lattice models

1 Introduction

The interior of living cells is characterized by highly organized complex structures. To build
and maintain these internal structures, cells rely on directed active transport of various types
of cargoes to different destinations within the cell. This transport is driven by molecular
motors which use the energy derived from the hydrolysis of adenosine triphosphate (ATP)
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to move along cytoskeletal filaments [14, 44]. There are three large families of cytoskeletal
motors, kinesins and dyneins, which move along microtubules, and myosins, which move
along actin filaments [14, 44].

Since cells provide crowded environments, motors moving along filaments encounter a
variety of other molecules bound to the same filaments, which may hinder their movement.
These obstacles may represent other motors of the same type, and the traffic phenomena
that arise in such systems with many motors have been studied extensively in recent years.
Many theoretical studies have explored the formation of traffic jams and non-equilibrium
phase transitions [8, 16, 17, 31, 38, 39], and traffic jams of molecular motors have recently
been observed in several experimental studies [25, 29, 38]. A system with two different
species of motors that move into opposite direction has also been studied theoretically and
is predicted to exhibit spontaneous symmetry breaking and the formation of separate traffic
lanes for the two directions [19].

In addition to molecular motors, a variety of other molecules can bind to filaments
and affect the movement of these motors. An important example is given by microtubule-
associated proteins (MAPs), which bind to microtubules to control their structure and sta-
bility. In addition, MAPs can modulate the movement of the motors along the microtubules.
When overexpressed in vivo [2, 7, 43] or added to microtubule gliding assays with kinesin
or dynein motors in vitro [11, 12, 32, 40], MAPs decrease or completely inhibit motility
of motors. More recent experiments using lower concentrations of MAPs and tracking the
movements of individual motors show that most MAPs studied so far affect motor move-
ments by modulating binding of the motors to microtubules. For example, the tau protein,
a MAP specific for neurons, has been shown to decrease the binding of kinesin and dynein
motors to microtubules [5, 48, 52]. Its effect depends on the tau isoform [52], is more pro-
nounced for kinesin than for dynein motors [5, 7, 53], and has a stronger effect on cargoes
pulled by several motors than on individual motors, see [21, 48, 52] and the discussion be-
low. These subtle and highly specific effects seen at low tau concentration [5, 48, 52] suggest
that tau (and other MAPs) may play important roles as regulators of transport in cells, and
function as general transport inhibitors only under pathological conditions [33]. For exam-
ple, the differential effects on kinesins and dynein suggest that tau can control the direction
of motion of cargoes that are carried by both types of motors, as discussed in [36].

When modeling large-scale transport by molecular motors, static molecules bound to
the filaments can be considered as local properties of the filament. They represent static or
quenched defects of the filament that affect the motor dynamics locally. The same theoreti-
cal description may then be used for other types of defects that cause local effects on motor
transport. Such defects may for example be local modifications of the filament themselves
such as microtubule lattice defects or a variety of post-transcriptional modifications of tubu-
lin, the subunit of microtubules. Some of these modifications have been shown to affect the
microtubule-binding or the movement of motors [27, 28, 42]. Finally, in addition to these
naturally occurring defects, artificial ‘roadblocks’ such as inactive motor mutants have been
used in several experiments to perturb the movement of active motors in order to study the
mechanisms of motor function [3, 47].

In this paper, we study the effects of various types of defects on the movements of mole-
cular motors using the lattice model introduced in [31]. Here we use the simple description
of the dynamics of motor stepping provided by the lattice model to distinguish three basic
types of static defects and to study their effects on single motors as well as on the motor
traffic in many-motor systems. The three basic types of defects are given by filament sites
that differ from the other filament sites in one of three motor parameters: (i) stepping defects
have an altered forward stepping probability, (ii) unbinding defects have an altered unbind-
ing probability, and (iii) binding defects have an altered binding probability. Some cases that
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have been studied previously can be considered as special cases of this general approach.
For example a single stepping defect has been studied in [41], and a single unbinding defect
without unbinding from non-defect sites in [34]. Very recently, binding defects have been
studied in [10]. Stepping defects have also been investigated extensively for one-dimensional
exclusion processes [15, 18, 24, 50], which, in our model, correspond to movement of mo-
tors along a filament without binding and unbinding. We also note that in the statistical
mechanics literature such defects are classified as ‘sitewise’ disorder, since the anomalous
properties are related to a fraction of the lattice sites, as opposed to the case of ‘particlewise’
disorder, for which some of the moving particles exhibit anomalous properties [26].

The paper is organized as follows: In Sect. 2, we introduce the lattice model and the
system geometry used in this study as well as the description and classification of defects.
We discuss the modeling of known biological defects such as MAPs within this model. We
then study stepping defects in Sect. 3, unbinding defects in Sect. 4 and binding defects in
Sect. 5. We conclude with a few general remarks on the use of defects in transport.

2 Lattice Model with Different Types of Defects

2.1 Lattice Model for the Traffic of Molecular Motors

To study the effects of various types of defects and the transport by molecular motors, we
extend the lattice model introduced in [31], which we have previously used to describe both
the movement of single motors [20, 31, 37] as well as the traffic in many-motor systems
[17, 31]. This model describes the movements of a single molecular motor along a filament
as a random walk on a (generally three-dimensional) lattice, which contains one or several
lines of lattice sites that represent filaments. The lattice constant � is given by the step
size of a motor moving actively along a filament. Per unit time τ , a motor at a filament
site makes a forward step along the filament with probability α, unbinds to each of the
four neighboring non-filament sites with probability ε/6, and remains at the same site with
probability γ = 1−α−4ε/6. Motors at non-filament sites perform symmetric random walks
and move to each nearest neighbor site with probability 1/6. The choice of this probability
implies that the time scale τ is given by the diffusion coefficient of unbound motors Dub as
τ = �2/Dub. If an unbound motor moves to a filament site, it binds to it with the sticking
probability πad. If πad �= 1, this condition modifies the probability for the movement from a
non-filament site to a filament site to πad/6. In general, we can model both freely suspended
filaments, for which the filament site is connected to four neighboring non-filament sites,
and immobilized filaments, for which the number of nearest neighbors is at most equal to
three. In the simulations reported below, we focused on freely suspended filaments.

In addition to the dynamics of single motors, the lattice model can also describe systems
with many interacting motors. In the simplest case, these motors interact only through their
mutual exclusion from lattice sites, which is implemented in the model by not allowing any
steps to sites that are occupied by another motor. Typically the density of motors at non-
filament sites is much lower than at filament sites, so that the exclusion rule affects mainly
binding to the filament and movement along it. By virtue of this exclusion rule, our model
is a variant of driven lattice gas models or exclusion processes, which have been studied
extensively as model systems for transport processes and non-equilibrium phase transitions
[45, 46].

Throughout this article, we will study systems that have a tube-like geometry as shown
in Fig. 1. In these systems a single filament is located on the axis of a cylindrical tube
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Fig. 1 Molecular motors inside a cylindrical tube with a filament aligned along its axis. This tube system
mimics the geometry of elongated cellular structures such as axons. The tube has the length L and the radius
R. Motors bound to the filament move actively along the filament in a directed fashion, while unbound motors
perform diffusive movements. The boundary condition is periodic along the x-axis

with length L and radius R. This geometry mimics the structure of some types of cells,
such as axons of nerve cells or hyphae of fungi, which are approximately tubular and
have a unidirectional microtubule cytoskeleton [9]. Similar tube-like systems have previ-
ously been studied with various types of boundary conditions [17, 22, 31, 35]. In order to
keep the discussion simple, we will focus on periodic boundary conditions in the follow-
ing.

For periodic boundary conditions, the case without defects is particularly simple and
has been solved exactly [17]. In this case, the densities of bound and unbound motors, ρb

and ρub, respectively, are spatially homogeneous and satisfy a binding-unbinding balance
condition,

πadρub(1 − ρb) = ερb(1 − ρub) ≈ ερb, (1)

and the motor current J along the filament is given by J = αρb(1 − ρb). In the case of a
single motor, the balance equation is

πadρub = ερb, (2)

from which one can derive the steady-state probability that the motor is bound to the fila-
ment, Pb = ∑

x ρb = ρbL/�, which is given by

Pb = πad

πad + εNch
, (3)

where Nch is the number of unbound channels, i.e., the number of lines of lattice sites parallel
to the filament in a discretized tube with cross section φ = (1 + Nch) ≈ πR2 for sufficiently
large radius R. The effective motor velocity, averaged over the bound and unbound states of
the motor, is then obtained as

veff = Pbvb = απad

πad + εNch

�

τ
, (4)

where vb = α�/τ is the velocity of the bound motor.

2.2 Lattice Model with Different Types of Defects

Inhomogeneities of the filament such as those mentioned in the introduction may affect one
or several of the motor properties. This can be described within the lattice model by modi-
fying one or several of the hopping probabilities compared to the homogeneous situation. In
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Fig. 2 Three types of defects
studied in this article:
(a) Stepping defect indicated by
an encircled site with a modified
forward stepping probability αdef
compared to other filament sites.
(b) Unbinding defect with a
modified unbinding probability
εdef. (c) Binding defect with a
modified binding probability
πdef. All other transition
probabilities are the same at the
defect site as at the other filament
sites

the following, we distinguish three basic types of defects which are characterized by a single
parameter that differs from the homogeneous case as shown in Fig. 2: (i) Stepping defects
have a changed probability αdef for forward movement, but unchanged binding probability
πad and unbinding probability ε; (ii) unbinding defects have a changed unbinding probabil-
ity εdef; and (iii) binding defects have a modified sticking probability πdef. In all three cases,
the dwell probability γdef also needs to be adapted, so that the sum of all probabilities is
again equal to one.

More complicated types of defects can be considered as combinations of these basic de-
fects. For example an inaccessible site due to a large immobile protein bound to the filament,
such as an inactive mutant motor, can be described by a combination of a stepping defect
and a binding defect with αdef = πdef = 0.

Table 1 lists examples of defects that have been characterized experimentally and sum-
marizes their effects on molecular motors. Microtubule-associated proteins (MAPs) such as
the tau proteins essentially represent binding defects (an exception is MAP4 [49], see Ta-
ble 1). They reduce the binding rate of kinesin to microtubules and have no or only a weak
effect on the velocity of bound kinesins as well as on the unbinding rate or the run length,
the distance moved along the filament before unbinding [48, 52]. Similar effects have been
observed for dynein motors [5], which in general are less affected by MAPs than kinesins.
In vivo, tau has also been shown to reduce the run length for vesicular cargoes. The increase
in unbinding rate for these cargoes is most likely a consequence of the fact that these cargoes
are pulled by several motors rather than a single motor, since for cargoes pulled by several
motors, the unbinding rate is a function of the single-motor binding rate [21, 48]. This effect
has been demonstrated in vitro for tau and beads pulled by several kinesins [52]. Therefore
defects that are binding defects for individual motors, can be both binding and unbinding
defects for cargoes pulled by multiple motors.

The effects of post-translational modifications of microtubules on motor movements have
not been characterized in much mechanistic detail. One case for which the effect is known
is acetylation/deacetylation of a particular lysine residue of α-tubulin for which it has been
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Table 1 Overview of different types of defects and their effects on molecular motor movement

Defects Motors Stepping Unbinding Binding References Note

Tau kinesin – – reduced [5, 48, 52] a

Tau kinesin reduced increased reduced [5] b

MAP2c kinesin – – reduced [48]

MAP4 kinesin reduced – – [49] c

Tau dynein-dynactin reduced increased reduced [5] b

Tau dynein – – reduced [53]

De-acetylated α-tubulin kinesin reduced – reduced [42]

Tubulin without E-hook kinesin reduced – – [27]

Inactive motor mutant kinesin reduced to 0 ? reduced to 0 [3, 47] d

aRefs. [5, 52] also report shorter run lengths, i.e. increased unbinding, not observed in [48]. In addition, [5]
reports also a substantial fraction of immobile motors bound to microtubules
bUnder the conditions of this experiment motors have rather long run lengths in the absence of tau, longer
than in the experiments of [48, 52, 53]
cThe effect depends on which isoform of MAP4 is used. A 5-repeat isoform exhibits a strong effect, while
the other isoforms studied showed only small effects [49]
dRefs. [3, 47] report conflicting results for the effect on unbinding

shown that kinesin binds more strongly to the acetylated form than to the de-acetylated form
[42]. Microtubules containing de-actelyated tubulin subunits therefore provide another ex-
ample of binding defects. Microtubule lattice defects are believed to cause unbinding of mo-
tors, see, e.g. [4], and would thus represent unbinding defects. While this scenario is plausi-
ble, it has not been studied systematically and there is no direct experimental evidence for it.

Finally, the artificial ‘roadblock’ motor mutants used in [3, 47] represent blocked sites,
i.e. combinations of a stepping defect with very low, essentially zero, stepping rate and a
binding defect. Whether they also affect unbinding is unclear, since the two experiments in
[3, 47] reported conflicting results, for a discussion see also [23]. In another recent experi-
ment, some motors were inactivated by irreversible crosslinking to a microtubule to obtain
blocked sites [6].

3 Transport by Molecular Motors in the Presence of Stepping Defects

3.1 Single Motor with Stepping Defects

We start by considering stepping defects. At a stepping defect, the motor has the forward
stepping probability αdef, while the binding and unbinding parameters are the same as at
the other filament sites. We note that the probability to remain at the site is also changed
compared to other sites and given by γdef = 1 − αdef − 4ε/6. We consider a single filament
in a tube as shown in Fig. 1 with a density ρdef of stepping defect sites. To keep the discussion
simple we study the case where the defect sites are arranged periodically on the filament.
This situation is then equivalent to a system with a single defect, length L = �/ρdef and
periodic boundary conditions.

First, we consider the effect of stepping defects on a single motor. As the stepping de-
fects do not affect the binding and unbinding probabilities of the motor, one may expect
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that the binding probability is the same as in the absence of defects. However, relation (2),
which describes a local balance of binding and unbinding, is not valid in the presence of
stepping defects, since the motor densities are not constant along the filament because of the
prolonged waiting times of the motor at the defect sites. Thus relation (2) has to be replaced
by the global balance of binding and unbinding which remains valid if the densities are not
constant and is given by

∑

x

πadρub(x, ynn, znn) =
∑

x

ερb(x), (5)

where ynn and znn are the perpendicular coordinates of a single channel of non-filament sites
that are the nearest neighbors of the filament sites, e.g. ynn = � and znn = 0. The inhomo-
geneity of the unbound density is relatively small because the fast motor diffusion tends to
smooth the unbound density profile and taking the unbound density to be independent of the
coordinates perpendicular to the filament, i.e. ρub(x, y, z) � ρub(x), is usually a very good
approximation [17, 22]. Within this “two-state” approximation, the probabilities Pb and Pub

to find the motors in a bound or an unbound state, respectively, are given by

Pb =
∑

x

ρb(x) and Pub = Nch

∑

x

ρub(x), (6)

and satisfy the normalization condition

Pb + Pub = Pb + Nch

∑

x

ρub(x) = 1. (7)

The flux balance relation (5) then becomes

πad
Pub

Nch
= πad

1 − Pb

Nch
= εPb, (8)

which leads to

Pb = πad

πad + εNch
, (9)

the same expression as for the case without stepping defects.
To obtain the effective velocity of the motor, we introduce an effective passing time

to describe the movement of the bound motor. We assume that the motor spends the time
τ0 = τ/α at a normal site and the time τdef at a defect site. Since there are L/� − 1 normal
sites and only one defect site on a filament segment of length L, the total time to move
through such segment is ttot = (L − �)τ/�α + τdef, provided the motor typically remains
bound to the filament during such a run. The velocity of a bound motor can be estimated by

vb,eff = L

ttot
= α

1 − �
L
(1 − ατdef

τ
)

�

τ
. (10)

The effective velocity, which characterizes the motor movement including the diffusive ex-
cursions upon unbinding, is then given by veff = vb,effPb.

The time τdef to pass a defect remains to be specified. In the limit of a sufficiently weak
defect and sufficiently processive motors as assumed so far, this time is given by the inverse
of the defect stepping probability, i.e. τdef = τ/αdef. In general, however, there are two ways
in which a motor can pass a stepping defect: the motor can either slowly step through the
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defect along the filament or it may unbind from the filament and rebind to it after diffusing
around the defect. The relative importance of these two pathways depends on their relative
probabilities: when αdef � ε, the direct path through the defect dominates, while unbinding
and diffusion will be the dominant pathway for αdef � ε.

If the stepping probability αdef at the defect is not large compared to the unbinding pa-
rameter ε, the probability for the motor to take the diffusion channel is comparable with
the probability to move forward along the filament. To estimate the contribution of the dif-
fusion channel, we start with the limiting case αdef = 0, for which the motor can only take
the diffusive channel to pass defect sites. We make the ansatz that the probability for taking
the diffusive pathway is proportional to the unbinding probability ε. For αdef = 0, the time
it takes the motor to pass the defect is then given by τdef = τ/qε and the effective motor
velocity is given by

veff � L

ttot
Pb = α

1 − �
L

+ �
L

α
qε

πad

πad + εNch

�

τ
. (11)

In these expressions, q is an unknown free parameter and should depend on the geometry of
the system. For the parameters used in our simulations, we have determined this parameter
by fitting the expression for veff to the simulation data for αdef = 0, see Fig. 3(a), which leads
to q � 0.25.

Fig. 3 Transport properties of single motors in the presence of stepping defects: (a) Normalized effective
velocity veff/α (in units of �/τ ) and (b) Average run length 〈
x〉 (in units of �) as a function of the defect
density ρdef for different values of the defect strength αdef. The simulation data (symbols) are fitted by (13)
and (15), respectively, with q = 0.25 for all curves. (c) Run length histograms: without stepping defects (the
straight line), the run length distribution is well fitted by a single exponential with average run length as
given by (14); with stepping defects, the distribution has a peak for short run lengths and decays faster for
large run lengths. The motor parameters are chosen to match the traffic of kinesins [17, 31]: α = 0.0099333,
πad = 1, and ε = 0.0001. Furthermore we used Nch = 1960 in (a) and (b), and ρdef = 0.001 or L/� = 1000
and Nch = 316 in (c)
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For intermediate values of the stepping probability αdef, both pathways contribute and
the total probability to pass the defect is given by the sum of the probabilities for the two
channels. The effective passing time τdef for the motor is then proportional to 1/(αdef + qε).

This expression implies that the effective bound motor velocity (or effective stepping
rate) is given by

vb,eff = α

1 − �
L

+ �
L

α
αdef+qε

�

τ
≡ αeff

�

τ
, (12)

and leads to the effective motor velocity

veff = α

1 − �
L

+ �
L

α
αdef+qε

πad

πad + εNch

�

τ
. (13)

For the parameters used in Fig. 3(a), the free parameter q has been determined by fitting
this expression to the simulation data for αdef = 0 and applied to other cases of different
value of αdef. The curves obtained from expression (13) agree very well with the simulation
data. We note however that this expression is not strictly valid in the limit of very weak de-
fects with αdef ≈ α. Putting αdef = α in (12) leads to αeff = α + O(ε/α), i.e. to a discrepancy
of order ε/α, which is very small for processive motors.

Figure 3(a) shows that the velocity is reduced compared to the case without defects.
As one might expect, this reduction is larger for stronger defects and/or for higher defect
densities. If the defects are sufficiently strong, even very small defect densities lead to a
substantial reduction of the velocity. For example, if 1 percent of sites on the filament are
stepping defects with αdef = 0, the velocity of the single motor is reduced to about 20 percent
compared to that without defects.

Another important property of the motors that is affected by stepping defects is their run
length 
x, i.e. the distance a motor moves along a filament before unbinding from it. In the
absence of defect sites on the filament, the average run length is given by

〈
x〉0 = α

4ε/6
�, (14)

and the distribution of run lengths decays exponentially as exp(−
x/〈
x〉0). The run length
distribution for the case without defects is shown in Fig. 3(c), see the straight line. This
exponential decay is modified by the presence of stepping defects, as also shown by the
simulation data points in Fig. 3(c). In the presence of a low density of defects, the run
length distribution decays slightly faster for large run length, and, in addition, develops a
pronounced peak for short run length. This peak corresponds to short runs that start close
to a defect and end at the same defect. Both effects lead to a reduction of the average run
length. As the unbinding probability of the motors is not affected by stepping defects, the
time a motor remains bound to a filament is the same with and without defects.1 However,
the distance moved during this time is reduced if the motor encounters a defect. We can
therefore estimate the average run length using the effective velocity of a bound motor, vb,
which leads to

〈
x〉 = αeff

4ε/6
� = 〈
x〉0

1 − �
L

+ �
L

α
αdef+qε

. (15)

1We note that this is not necessarily the case if stepping and unbinding are coupled, e.g. if unbinding occurs
during the step and is characterized by an unbinding probability per step rather than an unbinding rate. This
scenario may arise for certain types of internal dynamics of the motors, see [23].
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The dependence of the mean run length on the density and the strength of the defects is
shown in Fig. 3(b). For strong defects with αdef � ε, the precise value of αdef is irrelevant,
as motors at the defect site typically unbind, before passing through the defect. For weaker
defects, i.e. larger αdef, the reduction of the run length is shifted towards larger defect den-
sities. For αdef > ε, an approximately two-fold reduction of the run length is obtained when
the defect density ρdef and αdef/α have the same order of magnitude.

3.2 Many Motors with Stepping Defects

We now consider the effect of stepping defects on the traffic of many motors, which interact
through mutual exclusion from filament sites. For the traffic of many motors in a tube with
length L, we are interested in the following quantities [30]: (i) Bound density ρb as a func-
tion of the spatial coordinate x along the tube axis; (ii) Bound current Jb(x) which gives the
number of motors that pass through a lattice site on the filament with coordinate x per unit
time; and (iii) Average bound current 〈Jb〉 ≡ ∫

dxρb(x)/L which characterizes the overall
transport along the filament.

In general, as one increases the total number of motors in the tube, or equivalently the
concentration of these motors, the average bound current of motors on the filament increases
first, but eventually reaches a maximal value and then starts to decrease as the traffic be-
comes jammed [17], see Fig. 4(a). The presence of stepping defects decreases the average
bound current compared to the case without the defects for all choices of the total number of

Fig. 4 Traffic of molecular motors in the presence of stepping defects: (a) Normalized average bound current
〈Jb〉/α (in units of τ−1) as a function of the number of motors in the tube for different values of αdef. The
black curve which gives the exact value of average bound current for the case without defects is calculated
as in [17]. (b) Bound motor density ρb as a function of the coordinate x (in units of �) along the tube for
αdef = 0 and different numbers of motors in the tube. (c) Corresponding normalized bound motor current
Jb/α (in units of τ−1) as a function of x. (d) Bound density profiles ρb(x) for a weaker stepping defect with
αdef = 0.5α. The parameters are the same as in Fig. 3 except for L = 200� or, equivalently, ρdef = 0.005
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motors within the tube. The stronger the defects, the lower is the value of the average bound
current. In addition, the curve for the average bound current as a function of the overall mo-
tor number becomes broader as the strength of the defects increases, and the maximum of
the average bound current is shifted towards larger values of the overall motor number, see
Fig. 4(a).

Density profiles of bound motors along the filament in the presence of stepping defects
are shown in Fig. 4(b) for the limiting case αdef = 0, for which motors can only pass the
defects by unbinding, diffusion and rebinding to the filament. These profiles show that step-
ping defects induce local traffic jams in front of the defect and a depletion zone after it.
These profiles are very similar to those found in earlier studies on closed and half-open tube
systems [22, 31, 35] with the defect playing the role of the boundary of the tube. The spa-
tial extension of the jammed region increases with the overall motor concentration. The end
of the jammed region distal to the defect is marked by a rather sharp shock, i.e. a sudden
change in density. The corresponding profiles of the current of bound motors are shown in
Fig. 4(c). Weaker stepping defects with αdef > 0 cause a smaller perturbation of the bound
density and bound current profiles; as shown in Fig. 4(d) for the case αdef = 0.5α, the effect
of the defects is then confined to a small region around the defect.

4 Transport by Molecular Motors in the Presence of Unbinding Defects

4.1 Single Motor with Unbinding Defects

The second type of defects that we investigate is provided by unbinding defects. Motors at
an unbinding defect site move forward with probability α, unbind with probability εdef/6 to
each neighboring non-filament site and remain at the same position with probability γdef =
1 − α − 4εdef/6. We study again the case where the defects are regularly distributed on the
filament with concentration ρdef = �/L and we start by considering the effect of the defects
on the movement of a single motor.

Since all sites have the same stepping parameter α, the velocity of a bound motor, vb =
α�/τ is not affected by the unbinding defects and the effective velocity, which is averaged
over the bound and unbound states of the motor, is given by

veff = αPb
�

τ
= α

(
∑

x

ρb(x)

)
�

τ
. (16)

Since the unbinding defects break the translational invariance of the system, they lead to
inhomogeneous bound and unbound density profiles, so that the binding-unbinding balance
is again not valid locally. As in the case of stepping defects, the bound and unbound motor
densities satisfy a global balance of binding and unbinding

πad

∑

x

ρub(x, ynn, znn) =
∑

x

ε(x)ρb(x), (17)

where ynn and znn are again the perpendicular coordinates of a single channel of non-filament
sites that are the nearest neighbors of the filament sites.

As a global property of motor unbinding, we introduce an effective unbinding probability,
εeff, which is defined via

∑

x

ε(x)ρb(x) ≡ εeff

∑

x

ρb(x) = εeffPb. (18)
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Using this relation in (17) together with the replacement of ρub(x, ynn, znn) by ρub(x) and
the normalization condition (7), the probability Pb as defined by (6) is now given by

Pb = πad

πad + εeffNch
(19)

instead of relation (9) for stepping defects. Furthermore, the flux balance relation (17) is
equivalent to

πad
Pub

Nch
= πad

1 − Pb

Nch
= εeffPb. (20)

It follows from (16) and (19) which replaces the relation (9) for stepping defects that the
effective unbinding parameters εeff and the effective velocity veff satisfy the relation:

εeff = πad

Nch

(
α

veff

�

τ
− 1

)

. (21)

So far, we have only rewritten the motor properties in terms of the new parameter εeff. In
the following, we will consider several analytical approximations to determine the effective
unbinding parameter εeff, which then leads to estimates for the bound state probability Pb

and the effective velocity veff.
The simplest ansatz for εeff is to take the average of the unbinding probability along the

filament, which leads to

εeff � 〈ε(x)〉 = ε + �

L
(εdef − ε) = ε + ρdef(εdef − ε), (22)

with the defect density ρdef = �/L. This approximation is valid if the bound motor density
along the filament is approximately constant. The latter condition is fulfilled if the motor is
fast with α � ε and α � εdef.

In the opposite limit of small stepping parameter α, the flux balance arising from binding
and unbinding events is approximately valid locally, i.e.

πadρub(x) ≈ ε(x)ρb(x) (23)

for small α. This relation is exact in the equilibrium case with α = 0. Furthermore, for
small α, the unbound density varies very little and can be approximated by a constant ρub,
which again becomes exact for the equilibrium case with α = 0. It then follows from (23)
that the bound density ρb behaves as

ρb(x) � πadρub

ε(x)
, (24)

for small stepping probability α. The probability Pub for an unbound motor state is now
given by

Pub = Nch

∑

x

ρub(x) ≈ Nch
L

�
ρub (25)

and the probability for a bound motor state by

Pb =
∑

x

ρb(x) ≈
∑

x

πadρub

ε(x)
. (26)
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Inserting the two expressions (25) and (26) into (20), one obtains the relation

1

εeff
≈ �

L

L∑

x=�

1

ε(x)
= 1

ε
+ �

L

(
1

εdef
− 1

ε

)

. (27)

for the effective unbinding probability εeff in the limit of small stepping parameter α. Note
that in this limit of small α, one has to average the inverse of the local unbinding parameter
rather than the unbinding parameter itself as in the limit of large α. Expanding the relation
(27) in powers of the defect density ρdef = �/L leads to

εeff ≈ ε + �

L
(εdef − ε)

ε

εdef
. (28)

Comparison of this result for small α with (22), which is valid for large α, shows that in both
cases (εeff − ε) ∼ �/L = ρdef, but with different prefactors. These relations are confirmed by
simulations, see Fig. 5(a). Furthermore, the simulation data show how intermediate values of
α interpolate between these limiting cases. For these intermediate values, which are typical
for motors with finite processitivity, the effective unbinding probability exhibits a weak
dependence on α. The simulation data are described rather well by the expression

εeff = ε + ρdef(εdef − ε)
ε + q ′α

εdef + q ′α
, (29)

Fig. 5 Transport properties of single motors in the presence of unbinding defects: (a) Normalized effective
unbinding probability εeff/ε obtained from simulations via (21). (b) Normalized effective velocity veff/α (in
units of �/τ ). (c) Average run length 〈
x〉 (in units of �) as a function of the defect density ρdef. The lines in
(b) and (c) are fits to the simulation data using (29) combined with (21) and (30), respectively. (d) Run length
distribution for different defect strengths εdef/ε. The straight line corresponds to the exponential function
(4ε/6α�) exp(−4
xε/6α�) of run length distribution without defects. The parameters are the same as in
Fig. 3 except for α0 = 0.0099333 in (a) and for Nch = 316 and L/� = 1000 in (d)
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where q ′ is a free parameter determined to be q ′ � 4.0 by fitting the simulation data. Note
that the expression (29) interpolates between (22) for large α and (28) for small α. Using
(29) also leads to a rather accurate description of the motor velocity as obtained from simu-
lations, see Fig. 5(b), where the motor velocity is shown as a function of defect density and
defect strength, i.e. the defect unbinding probability. We note that small defect densities can
have a rather strong effect, if the unbinding probability at the defect is of the same order
of magnitude as the stepping probability α. For example in the case εdef = 128ε, a defect
density of about 4 percent reduces the effective velocity two-fold and a 10 percent defect
density reduces it three-fold.

Unbinding defects also reduce the run length of the motor. In the presence of unbinding
defects, the mean run length can be expressed in terms of the effective unbinding probability
as

〈
x〉 = α

4εeff/6
�, (30)

as obtained from (14) when ε is replaced by εeff. The dependence of the mean run length on
the defect strength and the defect density is shown in Fig. 5(c). As in the case of stepping
defects studied above, see Fig. 3, small defect densities have only a weak effect on the run
length, while large defect densities shorten the runs strongly. The crossover density at which
the effect of the defects becomes notable has a strong dependence on the defects strength, i.e.
εdef, and can be quite small for strong defects with large εdef. For example, for εdef = 256ε,
a two-fold reduction of the mean run length is obtained for ρdef � 0.007, that is if less than
one percent of the filament sites are unbinding defects. The effect of unbinding defects on
the run length is very similar to the corresponding effect of stepping defects, see Fig. 3. This
similarity reflects the fact that the effects of strong stepping and unbinding defects have some
common aspects: when the motor encounters the defects, it has a rather high probability to
unbind from the filament, either because of the high unbinding probability at an unbinding
defect or because of the prolonged sojourn time at a stepping defect.

As a consequence, unbinding and stepping defects also have a similar effect on the run
length distributions, compare Fig. 5(d) and 3(c). Figure 5(d) shows run length distributions
for a rather low density of unbinding defects. As in the case of stepping defects, the length
scale that governs the exponential decay of the distribution is slightly reduced, and the dis-
tributions exhibit a peak at small run lengths.

4.2 Many Motors with Unbinding Defects

Now let us consider the effect of unbinding defects on the traffic of many motors which
interact through mutual exclusion. Figure 6(a) shows the average bound current as a function
of the overall number of motors within the tube for a low defect density. It can be seen from
these plots that the binding defects do not always reduce the current, as one might expect and
as found for the stepping defects discussed above, see Fig. 4(a). For small motor numbers,
the average bound current is indeed slightly reduced by the presence of the defects, but for
large motor numbers, the current is slightly increased. This observation can be understood as
follows: For small motor concentration, the decrease of the bound motor density arising from
the unbinding defects leads to a reduction of the average bound current. If the concentration
of motors is however larger than the concentration for which the average bound current
attains its maximal value, a reduction of the bound motor density leads to an increase of the
average bound current, because the increased unbinding probability relieves the traffic jams
appearing for high motor densities.
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Fig. 6 Motor traffic in the presence of unbinding defects: (a) Normalized average bound current 〈Jb〉/α
(in units of τ−1) as a function of the number of motors for different values of εdef. The black curve which
gives the exact value of average bound current for the case without defects is calculated as in [17]. (b) Bound
motor density ρb as a function of the spatial coordinate x (in units of �) along the tube axis. (c) Corresponding
profiles of the bound motor current Jb(x) (in units of τ−1). The parameters are the same as in Fig. 4, with
εdef = 128ε in (b) and (c)

Profiles of the bound motor densities on the filament are shown in Fig. 6(b). The profiles
are rather constant away from the defect, but have a minimum at the defect site. This is
what one would expect, since motors unbind from the filament at this site. For small overall
motor concentration (or total motor number), the profiles also exhibit a maximum in front
of the defect. This maximum arises from the locally increased density of unbound motors
which leads to increased rebinding of motors to the filament. Since this maximum requires
a locally increased motor density, it is only present if the diffusion of unbound motors is
not too fast. When the overall motor concentration is increased, this maximum disappears.
The corresponding bound current profiles are shown in Fig. 6(c) for a strong defect with
εdef = 128ε. The current exhibits a peak in front of the defects and a depletion zone behind
these defects. The depletion zone behind the defect follows the bound density profile closely,
which indicates that it reflects the reduced motor density due to unbinding at the defect. On
the other hand, the peak in front of the defect is present when the bound density exhibits a
peak, as well as for high motor concentration when no density peak occurs.

5 Transport by Molecular Motors in the Presence of Binding Defects

5.1 Single Motor with Binding Defects

The third class of defects we investigate are binding defects. This type of defect appears to
be the most common one in biological systems as shown in Table 1. At a binding defect site,
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Fig. 7 Transport properties of single motors and motor traffic in the presence of binding defects: (a) Nor-
malized velocity veff/α of a single motor as a function of the density ρdef of binding defects for different
values of πdef. The symbols show simulation data and the lines the corresponding results from a mean-field
calculation. (b) Normalized average bound current 〈Jb〉/α (in units of τ−1) as a function of the number of
motors in the tube for πdef = 0 and different defect densities ρdef. (c) Motor current (in units of τ−1) for
ρdef = 0.5 and different defects strengths πdef. The black curves in (b) and (c) which give the exact value
of average bound current for the case without defects are calculated as in [17]. The other parameters are the
same as in Fig. 4

bound motors have the same hopping probabilities as at any other filament site, but unbound
motors that approach the binding defect site have a reduced sticking probability πdef.

Similar to the case of unbinding defects as studied in the previous section, binding defects
do not affect the movement of bound motors, but rather change the balance of binding and
unbinding. The stronger the binding defects are, or the higher the density of binding defects
on the filament is, the less likely it becomes for motors to bind to the filament. A local
balance of binding and unbinding, similar to (17), is also valid in this case, but now with a
site-dependent binding probability.

Simulation results for the effective motor velocity as a function of the density of binding
defects are shown in Fig. 7(a). This figure also includes results obtained from a mean field
approximation using an effective (site-independent) binding parameter πeff � 〈πad(x)〉 =
πad + ρdef(πdef − πad). As can be seen in Fig. 7(a), the latter approximation leads to good
agreement with the simulation data. The most noticeable feature of Fig. 7(a) is that the effect
of binding defects is rather weak. Binding defects only have a notable effect at high defect
densities. But even if binding is completely suppressed at every second filament site, i.e. for
ρdef = 0.5 and πdef = 0, the effect remains weak, since the effective motor velocity is only
decreased by 14 percent. This result is in striking contrast to the strong effects of the other
two defects types.

As the binding defects do not affect the movement of bound motors, the run length is not
changed compared to the case without defects.
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5.2 Many Motors with Binding Defects

Finally we investigate the traffic of many motors in the presence of binding defects. Fig-
ure 7(b) shows the average bound current as a function of the number of motors in the tube
for binding defects with πdef = 0. As in the case of unbinding defects shown in Fig. 6(a),
binding defects can both increase and decrease the bound motor current. For low motor con-
centrations, binding defects reduce the current by reducing the probability that a motor is
bound. For large motor concentrations, the binding defects increase the current compared to
the case without defects, because the binding defects reduce the motor traffic jams on the
filament. For weaker binding defects with πdef > 0, the effect is similar, but even smaller.
The maximal value of the average bound current is not changed by the presence of binding
defects, the defects rather shift the current maximum to larger motor numbers, see Figs.
7(b) and 7(c). Again, the effect of binding defects is much weaker than that of stepping or
unbinding defects. Binding defects only have a notable effect on the traffic of many motors
when the defect density is sufficiently large.

5.3 Binding Defects and Cooperative Transport by Several Motors

We have noted above that binding defects account for most of the biologically relevant
defects. In striking contrast to their importance in biological systems, our analysis shows
that binding defects have very small effects on both the movements of individual motors
and on the traffic of many motors. It is important to note, however, that our conclusions
about binding defects apply only to the traffic of individual motor molecules or to the traffic
of cargo particles that are pulled by single motors. Unbinding defects are expected to have
a much stronger effect on cargo particles that are pulled by teams of several motors, the
typical situation for in vivo transport [1, 21, 36]. Thus, let us consider a cargo particle that
is pulled by N identical motors such as kinesin. The effective unbinding rate εeff of such
a cargo particle is proportional to (ε/πad)

N−1 for strongly binding motors with ε/πad � 1
[21] where ε and πad are the previously defined unbinding and sticking probabilities of a
single motor. Thus, for a cargo particle pulled by N strongly binding motors, the effective
unbinding rate εeff ∼ (1/πad)

N−1 and is, thus, strongly affected by the value πad for the
sticking probability of a single motor. This implies that binding defects for single motors
will act as unbinding defects for cargo particle pulled by several motors. This effect has
indeed been demonstrated experimentally for tau proteins: As expected for binding defects,
tau proteins do not affect the run length of individual motors [48, 52]. However, tau proteins
strongly reduce the run length for cargoes pulled by several motors [52] and, thus, act as
effective unbinding defects. A quantitative description for this latter effect can be obtained
by an extension of the models studied here and in [21, 36].

6 Summary

In this article, we have studied the traffic of molecular motors in the presence of different
types of static defects on the filament. We have determined several properties that charac-
terize the movement of single motors as well as the traffic behavior in many-motor systems
such as motor velocities, motor run length, motor density and current profiles.

We have considered three basic types of static defects, namely stepping, unbinding and
binding defects. At the defect sites, the dynamics of the motors differs in only one transition
probability from the dynamics at other filament sites. While stepping defects and unbinding
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defects have rather strong effects on the motor behavior and severely reduce the velocity,
run length and currents, the effect of binding defects on individual motors is much weaker
and becomes only notable if the density of the defects is sufficiently large. The run length
is not affected at all by binding defects. At first sight, these results appear to be at odds with
the experimental observation that most biologically relevant defects such as microtubule-
associated proteins (MAPs) represent binding defects as summarized in Table 1. It is, how-
ever, plausible that MAPs mainly regulate the movement of larger cargoes, which are pulled
by several motors. For such cargo particles, the effective unbinding rate εeff depends rather
strongly on the binding probability πad of individual motors as discussed in Sect. 5.3. Thus,
in order to describe the regulation of cargo particles by, e.g., MAPs, one should extend the
models discussed here to cooperative transport by teams of motors.

In general, localized inhomogeneities on filaments, which may be both modifications
of the filament itself or other molecules bound to the filaments, can modulate the patterns
of molecular motor transport in various ways. While most of the systems we considered
reduce motor movements, we note that unbinding defects can increase the motor current if
the local motor density is high. In addition, it is easy to imagine binding defects that increase
motor binding and function as loading stations that initiate filament transport, although we
are not aware of any biological system with this function. In addition to their functions for
intracellular transport, regulatory mechanisms via filament defects or inhomogeneities may
also be of interest for the development of artificial biomimetic transport systems based on
molecular motors [13, 51].
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